Part Number Hot Search : 
HIN239IB 1SMB5951 N4111 4LS37 LP521 HE387E HE387E BCR410W
Product Description
Full Text Search
 

To Download HCPL2201 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Very High CMR, Wide VCC Logic Gate Optocouplers Technical Data
HCPL-2201 HCPL-2211 HCPL-2231 HCPL-0201 HCNW2201 HCPL-2202 HCPL-2212 HCPL-2232 HCPL-0211 HCNW2211
Features
* 10 kV/s Minimum Common Mode Rejection (CMR) at VCM = 1000 V (HCPL-2211/2212/0211/ 2232, HCNW2211) * Wide Operating VCC Range: 4.5 to 20 Volts * 300 ns Propagation Delay Guaranteed over the Full Temperature Range * 5 Mbd Typical Signal Rate * Low Input Current (1.6 mA to 1.8 mA) * Hysteresis * Totem Pole Output (No Pullup Resistor Required) * Available in 8-Pin DIP, SOIC-8, Widebody Packages * Guaranteed Performance from -40C to 85C * Safety Approval UL Recognized -2500 V rms for 1 minute (5000 V rms for 1 minute for HCNW22XX) per UL1577 CSA Approved VDE 0884 Approved with VIORM = 630 V peak (HCPL2211/2212 Option 060 only) and VIORM = 1414 V peak (HCNW22XX only)
* MIL-STD-1772 Version Available (HCPL-52XX/62XX)
Description
The HCPL-22XX, HCPL-02XX, and HCNW22XX are opticallycoupled logic gates. The HCPL-22XX, and HCPL-02XX contain a GaAsP LED while the HCNW22XX contains an AlGaAs LED. The detectors have totem pole output stages and optical receiver input stages with built-in Schmitt triggers to provide logiccompatible waveforms, eliminating the need for additional waveshaping. A superior internal shield on the HCPL-2211/12, HCPL-0211,
Applications
* Isolation of High Speed Logic Systems * Computer-Peripheral Interfaces * Microprocessor System Interfaces * Ground Loop Elimination * Pulse Transformer Replacement * High Speed Line Receiver * Power Control Systems
Functional Diagram
HCPL-2201/11 HCPL-0201/11 HCNW2201/11 NC 1 ANODE 2 CATHODE 3 NC 4 8 VCC 7 VO 6 NC 5 GND NC 1 ANODE 2 CATHODE 3 NC 4 HCPL-2202/12 8 VCC 7 NC 6 VO 5 GND
SHIELD HCPL-2231/32
SHIELD
ANODE 1 1 CATHODE 1 2 CATHODE 2 3 ANODE 2 4
8 VCC 7 VO1 6 VO2 5 GND
TRUTH TABLE (POSITIVE LOGIC) LED VO ON HIGH OFF LOW
SHIELD
A 0.1 F bypass capacitor must be connected between pins 5 and 8.
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.
2
HCPL-2232 and HCNW2211 guarantees common mode transient immunity of 10 kV/s at a common mode voltage of 1000 volts.
The electrical and switching characteristics of the HCPL22XX, HCPL-02XX and HCNW22XX are guaranteed from -40C to +85C and a VCC from 4.5 volts to 20 volts. Low IF and
Selection Guide
Minimum CMR dV/dt (V/s) 1,000 Input OnCurrent (mA) 1.6 8-Pin DIP (300 Mil) Single Dual Channel Channel Package Package HCPL-2200[1,2] HCPL-2201 HCPL-2202 HCPL-2231 HCPL-2219[1,2] HCPL-2211 HCPL-2212 HCPL-2232
wide VCC range allow compatibility with TTL, LSTTL, and CMOS logic and result in lower power consumption compared to other high speed couplers. Logic signals are transmitted with a typical propagation delay of 150 ns. Hermetic Single and Dual Channel Packages
VCM (V) 50
SmallWidebody Outline SO-8 (400 Mil) Single Single Channel Channel Package Package HCPL-0201 HCNW2201
2,500 5,000[3]
400 300[3]
1.8 1.6 1.6 1.8 2.0
HCPL-0211
HCNW2211
1,000
50
HCPL-52XX[2] HCPL-62XX[2]
Notes: 1. HCPL-2200/2219 devices include output enable/disable function. 2. Technical data for the HCPL-2200/2219, HCPL-52XX and HCPL-62XX are on separate Agilent publications. 3. Minimum CMR of 10 kV/s with VCM = 1000 V can be achieved with input current, IF , of 5 mA.
Ordering Information
Specify Part Number followed by Option Number (if desired). Example: HCPL-2211#XXX 060 = VDE 0884 VIORM = 630 V peak Option* 300 = Gull Wing Surface Mount Option** 500 = Tape and Reel Packaging Option Option data sheets available. Contact your Agilent sales representative or authorized distributor for information.
*For HCPL-2211/2212 only. **Gull wing surface mount option applies to through hole parts only.
ICC 8 1 IF1 + VF1 - 2 SHIELD VO IO1 7 VO1 VCC
Schematic
ICC 8 2 IF + VF - 3 SHIELD HCPL-2201/02/11/12 HCPL-0201/11 HCNW2201/11 IO VCC
5
GND
3 - VF2 + 4 IF2 SHIELD HCPL-2231/32
IO2 6 VO2
5
GND
3
Package Outline Drawings
8-Pin DIP Package (HCPL-2201/02/11/12/31/32)
9.65 0.25 (0.380 0.010) TYPE NUMBER 8 7 6 5 7.62 0.25 (0.300 0.010) 6.35 0.25 (0.250 0.010)
OPTION CODE* DATE CODE
A XXXXZ YYWW RU 1 1.19 (0.047) MAX. 2 3 4
UL RECOGNITION
1.78 (0.070) MAX. + 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002)
5 TYP. 4.70 (0.185) MAX.
0.51 (0.020) MIN. 2.92 (0.115) MIN. DIMENSIONS IN MILLIMETERS AND (INCHES). *MARKING CODE LETTER FOR OPTION NUMBERS "V" = OPTION 060 OPTION NUMBERS 300 AND 500 NOT MARKED.
1.080 0.320 (0.043 0.013)
0.65 (0.025) MAX. 2.54 0.25 (0.100 0.010)
8-Pin DIP Package with Gull Wing Surface Mount Option 300 (HCPL-2201/02/11/12/31/32)
PAD LOCATION (FOR REFERENCE ONLY) 9.65 0.25 (0.380 0.010)
8 7 6 5
1.016 (0.040) 1.194 (0.047)
4.826 TYP. (0.190) 6.350 0.25 (0.250 0.010) 9.398 (0.370) 9.906 (0.390)
1
2
3
4
1.194 (0.047) 1.778 (0.070) 1.780 (0.070) MAX. 9.65 0.25 (0.380 0.010) 7.62 0.25 (0.300 0.010)
0.381 (0.015) 0.635 (0.025)
1.19 (0.047) MAX.
4.19 MAX. (0.165)
+ 0.076 0.254 - 0.051 + 0.003) (0.010 - 0.002)
1.080 0.320 (0.043 0.013) 0.635 0.130 2.54 (0.025 0.005) (0.100) BSC DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
0.635 0.25 (0.025 0.010)
12 NOM.
4
Small-Outline SO-8 Package (HCPL-0201/11)
8 7 6 5
3.937 0.127 (0.155 0.005)
XXX YWW
5.994 0.203 (0.236 0.008) TYPE NUMBER (LAST 3 DIGITS) DATE CODE
4
PIN ONE 1 0.406 0.076 (0.016 0.003)
2
3
1.270 BSG (0.050) * 5.080 0.127 (0.200 0.005) 7 0.432 (0.017)
45 X
3.175 0.127 (0.125 0.005)
0 ~ 7 1.524 (0.060) 0.203 0.102 (0.008 0.004)
0.228 0.025 (0.009 0.001)
* TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)
5.207 0.254 (0.205 0.010) DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES) MAX.
0.305 MIN. (0.012)
8-Pin Widebody DIP Package (HCNW2201/11)
11.15 0.15 (0.442 0.006)
8 7 6 5
11.00 MAX. (0.433) 9.00 0.15 (0.354 0.006) TYPE NUMBER DATE CODE
A HCNWXXXX YYWW
1
2
3
4
1.55 (0.061) MAX.
10.16 (0.400) TYP. 7 TYP. + 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 5.10 MAX. (0.201)
3.10 (0.122) 3.90 (0.154) 2.54 (0.100) TYP. 1.78 0.15 (0.070 0.006) 0.40 (0.016) 0.56 (0.022)
0.51 (0.021) MIN.
DIMENSIONS IN MILLIMETERS (INCHES).
5
8-Pin Widebody DIP Package with Gull Wing Surface Mount Option 300 (HCNW2201/11)
11.15 0.15 (0.442 0.006)
8 7 6 5
PAD LOCATION (FOR REFERENCE ONLY)
6.15 (0.242)TYP. 9.00 0.15 (0.354 0.006) 12.30 0.30 (0.484 0.012)
1 2 3 4
1.3 (0.051) 1.55 (0.061) MAX. 12.30 0.30 (0.484 0.012) 11.00 MAX. (0.433)
0.9 (0.035)
4.00 MAX. (0.158)
1.78 0.15 (0.070 0.006) 2.54 (0.100) BSC 0.75 0.25 (0.030 0.010)
1.00 0.15 (0.039 0.006)
+ 0.076 0.254 - 0.0051 + 0.003) (0.010 - 0.002) 7 NOM.
DIMENSIONS IN MILLIMETERS (INCHES). LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
Solder Reflow Temperature Profile (HCPL-02XX and Gull Wing Surface Mount Option 300 Parts)
260 240 220 200 180 160 140 120 100 80 60 40 20 0 0 1
T = 145C, 1C/SEC T = 115C, 0.3C/SEC
TEMPERATURE - C
T = 100C, 1.5C/SEC
2
3
4
5
6
7
8
9
10
11
12
TIME - MINUTES
Note: Use of nonchlorine activated fluxes is highly recommended.
6
Regulatory Information
The HCPL-22XX/02XX and HCNW22XX have been approved by the following organizations: UL Recognized under UL 1577, Component Recognition Program, File E55361.
CSA Approved under CSA Component Acceptance Notice #5, File CA 88324. VDE Approved according to VDE 0884/06.92. (HCPL-2211/2212 Option 060 and HCNW22XX only)
Insulation and Safety Related Specifications
8-pin DIP Package 8-Pin DIP (300 Mil) Value 7.1 SO-8 Value 4.9 Widebody (400 Mil) Value Units 9.6 mm
Parameter Minimum External Air Gap (External Clearance) Minimum External Tracking (External Creepage) Minimum Internal Plastic Gap (Internal Clearance)
Symbol L(101)
L(102)
7.4
4.8
10.0
mm
0.08
0.08
1.0
mm
Minimum Internal Tracking (Internal Creepage) Tracking Resistance (Comparative Tracking Index) Isolation Group
NA
NA
4.0
mm
CTI
200
200
200
Volts
Conditions Measured from input terminals to output terminals, shortest distance through air. Measured from input terminals to output terminals, shortest distance path along body. Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity. Measured from input terminals to output terminals, along internal cavity. DIN IEC 112/VDE 0303 Part 1
IIIa
IIIa
IIIa
Material Group (DIN VDE 0110, 1/89, Table 1)
Option 300 - surface mount classification is Class A in accordance with CECC 00802.
7
VDE 0884 Insulation Related Characteristics (HCPL-2211/2212 Option 060 ONLY)
Description Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage 300 V rms for rated mains voltage 450 V rms Climatic Classification Pollution Degree (DIN VDE 0110/1.89) Maximum Working Insulation Voltage Input to Output Test Voltage, Method b* VIORM x 1.875 = VPR, 100% Production Test with t m = 1 sec, Partial Discharge < 5 pC Input to Output Test Voltage, Method a* VIORM x 1.5 = VPR, Type and sample test, tm = 60 sec, Partial Discharge < 5 pC Highest Allowable Overvoltage* (Transient Overvoltage, tini = 10 sec) Safety Limiting Values (Maximum values allowed in the event of a failure, also see Figure 12, Thermal Derating curve.) Case Temperature Input Current Output Power Insulation Resistance at TS, VIO = 500 V Symbol Characteristic I-IV I-III 55/85/21 2 630 1181 Units
VIORM VPR
V peak V peak
VPR
945
V peak
VIOTM
6000
V peak
TS IS,OUTPUT PS,OUTPUT RS
175 230 600 109
C mA mW
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description. Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.
8
VDE 0884 Insulation Related Characteristics (HCNW22XX ONLY)
Description Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage 600 V rms for rated mains voltage 1000 V rms Climatic Classification Pollution Degree (DIN VDE 0110/1.89) Maximum Working Insulation Voltage Input to Output Test Voltage, Method b* VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial Discharge < 5 pC Input to Output Test Voltage, Method a* VIORM x 1.5 = VPR, Type and sample test, tm = 60 sec, Partial Discharge < 5 pC Highest Allowable Overvoltage* (Transient Overvoltage, tini = 10 sec) Safety Limiting Values (Maximum values allowed in the event of a failure, also see Figure 12, Thermal Derating curve.) Case Temperature Current (Input Current IF, PS = 0) Output Power Insulation Resistance at TS, VIO = 500 V Symbol Characteristic I-IV I-III 55/100/21 2 1414 2652 Units
VIORM VPR
V peak V peak
VPR
2121
V peak
VIOTM
8000
V peak
TS IS,INPUT PS,OUTPUT RS
150 400 700 109
C mA mW
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a detailed description. Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.
Absolute Maximum Ratings
Parameter Storage Temperature Operating Temperature Average Forward Input Current Peak Transient Input Current ( 1 s Pulse Width, 300 pps) ( 200 s Pulse Width, < 1% Duty Cycle) Reverse Input Voltage Average Output Current Supply Voltage Output Voltage Total Package Power Dissipation HCPL-223X Output Power Dissipation Lead Solder Temperature (Through Hole Parts Only) HCNW22XX Solder Reflow Temperature Profile (Surface Mount Parts Only) Symbol TS TA IF(AVG) IF(TRAN) HCNW22XX VR Min. -55 -40 Max. 125 85 10 1.0 40 Units C C mA A mA Note
1 1
HCNW22XX
5 V 3 IO 25 mA VCC 0 20 V VO -0.5 20 V PT 210 mW 294 PO See Figure 7 260C for 10 sec., 1.6 mm below seating plane 260C for 10 sec., up to seating plane See Package Outline Drawings section
1 1 1 2 1
9
Recommended Operating Conditions
Parameter Power Supply Voltage Forward Input Current (ON) HCPL-223X Forward Input Voltage (OFF) Operating Temperature Junction Temperature Fan Out VF(OFF) TA TJ N Symbol VCC IF(ON) Min. 4.5 1.6* 1.8 -40 -40 Max. 20 5 0.8 85 125 4 Units V mA V C C TTL Loads
*The initial switching threshold is 1.6 mA or less. It is recommended that 2.2 mA be used to permit at least a 20% LED degradation guardband. The initial switching threshold is 1.8 mA or less. It is recommended that 2.5 mA be used to permit at least a 20% LED degradation guardband.
Electrical Specifications
-40C TA 85C, 4.5 V VCC 20 V, 1.6 mA IF(ON)* 5 mA, 0 V VF(OFF) 0.8 V, unless otherwise specified. All Typicals at TA = 25C. See Note 7. Parameter Logic Low Output Voltage Logic High Output Voltage Output Leakage Current (VOUT > VCC) Logic Low Supply Current HCPL-223X Logic High Supply Current HCPL-223X Logic Low Short Circuit Output Current Logic High Short Circuit Output Current Input Forward Voltage HCNW22XX Input Reverse Breakdown Voltage HCNW22XX Input Diode Temperature Coefficient HCNW22XX Input Capacitance HCNW22XX BVR VF TA CIN ICCH Sym. VOL VOH IOHH ICCL Min. Typ. Max. Units Test Conditions Fig. Note 0.5 V IOL = 6.4 mA (4 TTL Loads) 1, 3 1 2.4 ** V IOH = -2.6 mA 2, 3, 1 8 2.7 IOH = -0.4 mA 100 A VO = 5.5 V IF = 5 mA 1 500 VO = 20 V 3.7 6.0 mA VCC = 5.5 V VF = 0 V IO = Open 4.3 7.0 VCC = 20 V 7.4 12.0 VCC = 5.5 V 8.6 14.0 VCC = 20 V 2.4 4.0 mA VCC = 5.5 V IF = 5 mA IO = Open 2.7 5.0 VCC = 20 V 4.8 8.0 VCC = 5.5 V 5.4 10.0 VCC = 20 V 15 mA VO = VCC = 5.5 V VF = 0 V 1, 3 20 VO = VCC = 20 V -10 mA VCC = 5.5 V IF = 5 mA 1, 3 VO = GND -20 VCC = 20 V 1.5 1.7 V TA = 25C IF = 5 mA 4 1 1.85 1.5 1.82 TA = 25C 1.95 5 V IR = 10 A 1 3 IR = 100 A -1.7 mV/C IF = 5 mA -1.4 60 pF f = 1 MHz, VF = 0 V 1, 4 70
IOSL IOSH VF
*For HCPL-223X, 1.8 mA I F(ON) 5 mA. **Typical VOH = VCC - 2.1 V.
10
Switching Specifications (AC)
-40C TA 85C, 4.5 V VCC 20 V, 1.6 mA IF(ON)* 5 mA, 0 V VF(OFF) 0.8 V. All Typicals at TA = 25C, VCC = 5 V, I F(ON) = 3 mA unless otherwise specified. Parameter Propagation Delay Time to Logic Low Output Level Propagation Delay Time to Logic High Output Level Output Rise Time (10-90%) Output Fall Time (90-10%) Parameter Logic High Common Mode Transient Immunity Sym. |CMH| Sym. tPHL Min. Typ. Max. Units Test Conditions 150 ns Without Peaking Capacitor 160 HCNW22XX 150 300 With Peaking Capacitor 110 ns Without Peaking Capacitor 180 HCNW22XX 90 300 With Peaking Capacitor 30 ns 7 ns Min. 1,000 Units V/s Test Conditions |VCM| = 50 V VCC = 5 V IF = 1.6 mA TA = 25C Fig. Note 5, 6 1, 6
tPLH
5, 6
1, 6
tr tf
5, 9 5, 9
1 1
Device HCPL-2201/02 HCPL-0201 HCPL-2231 HCNW2201 HCPL-2211/12 HCPL-0211 HCPL-2232 HCNW2211 HCPL-2201/02 HCPL-0201 HCPL-2231 HCNW2201 HCPL-2211/12 HCPL-0211 HCPL-2232 HCNW2211
Fig. Note 10 1, 7
5,000 10,000 1,000
V/s V/s V/s
Logic Low Common Mode Transient Immunity
|CML|
|VCM| = 300 V IF = 1.6 mA |VCM| = 1 kV IF = 5.0 mA |VCM| = 50 V
VF = 0 V VCC = 5 V TA = 25C
10
1, 7
10,000
V/s
|VCM| = 1 kV
*For HCPL-223X, 1.8 mA IF(ON) 5 mA. I F = 1.8 mA for HCPL-2231. I F = 1.8 mA for HCPL-2232.
11
Package Characteristics
Parameter Input-Output Momentary Withstand HCNW22XX Voltage* Input-Output Resistance HCNW22XX Input-Output Capacitance HCNW22XX Input-Input Insulation Leakage Current Resistance (Input-Input) Capacitance (Input-Input) Sym. VISO Min. Typ. Max. Units Test Conditions 2500 V rms RH < 50%, t = 1 min. 5000 TA = 25C 1012 1013 0.6 0.5 0.005 1011 0.25 TA = 25C TA = 100C pF 0.6 A pF f = 1 MHz, TA = 25C VI-O = 0 Vdc Relative Humidity = 45%, t = 5 s, VI-I = 500 V VI-I = 500 V f = 1 MHz 5 12 12 12 VI-O = 500 Vdc Fig. Note 5, 10 5, 11 5
RI-O 1012 1011 CI-O II-I RI-I CI-I
*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Characteristics Table (if applicable), your equipment level safety specification or Agilent Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage," publication number 5963-2203E.
Notes: 1. Each channel. 2. Derate total package power dissipation, PT , linearly above 70C free-air temperature at a rate of 4.5 mW/C. 3. Duration of output short circuit time should not exceed 10 ms. 4. For single devices, input capacitance is measured between pin 2 and pin 3. 5. Device considered a two-terminal device: pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together. 6. The t PLH propagation delay is measured from the 50% point on the leading edge of the input pulse to the 1.3 V point on the leading edge of the output pulse. The t PHL propagation delay is measured from the 50% point on the trailing edge of the input pulse to the 1.3 V point on the trailing edge of the output pulse. 7. CM H is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic high state, VO > 2.0 V. CML is the maximum slew rate of the common mode voltage that can be sustained with the output voltage in the logic low state, VO < 0.8 V. 8. For HCPL-2202/12, VO is on pin 6. 9. Use of a 0.1 F bypass capacitor connected between pins 5 and 8 is recommended. 10. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 3000 V rms for one second (leakage detection current limit, I I-O 5 A). This test is performed before the 100% production test for partial discharge (Method b) shown in the VDE 0884 Insulation Characteristics Table, if applicable. 11. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage 6000 V rms for one second (leakage detection current limit, I I-O 5 A). This test is performed before the 100% production test for partial discharge (Method b) shown in the VDE 0884 Insulation Characteristics Table. 12. For HCPL-2231/32 only. Measured between pins 1 and 2, shorted together, and pins 3 and 4, shorted together.
12
IOH - HIGH LEVEL OUTPUT CURRENT - mA
VOL - LOW LEVEL OUTPUT VOLTAGE - V
1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -60 -40 -20 0 20 40 60 80 100 VCC = 4.5 V VF = 0 V IO = 6.4 mA
0
VO - OUTPUT VOLTAGE - V
5
-1 -2 VO = 2.7 V -3 -4 -5 VO = 2.4 V -6 -7 -8 -60 -40 -20 0 20
VCC = 4.5 V IF = 5 mA
VCC = 4.5 V TA = 25 C 4
3 IO = -2.6 mA 2
1 IO = 6.4 mA 0 0 0.5 1.0 1.5
40
60
80 100
TA - TEMPERATURE - C
TA - TEMPERATURE - C
IF - INPUT CURRENT - mA
Figure 1. Typical Logic Low Output Voltage vs. Temperature.
HCPL-22XX HCPL-02XX
Figure 2. Typical Logic High Output Current vs. Temperature.
HCNW22XX TA = 25 C 100 10 1.0 0.1 0.01 IF + VF -
Figure 3. Typical Output Voltage vs. Forward Input Current.
1000
IF - FORWARD CURRENT - mA
1000
IF - FORWARD CURRENT - mA
TA = 25 C 100 10 1.0 0.1 0.01 IF + VF -
0.001 1.1
1.2
1.3
1.4
1.5
0.001 1.1
1.2
1.3
1.4
1.5
1.6
VF - FORWARD VOLTAGE - V
VF - FORWARD VOLTAGE - V
Figure 4. Typical Input Diode Forward Characteristic.
PULSE GEN. tr = tf = 5 ns f = 100 kHz 10 % DUTY CYCLE VO = 5 V ZO = 50
VCC HCPL-2201/11 HCPL-02XX HCNW22XX
1 2 3
OUTPUT VO MONITORING NODE
5V D1 619
VCC 8
*
7 6
PULSE GEN. tr = tf = 5 ns f = 100 kHz 10 % DUTY CYCLE VO = 5 V ZO = 50
1 2 3
VCC OUTPUT VO MONITORING NODE
HCPL-223X VCC 8
5V D1 619
INPUT MONITORING NODE R1
C2 = 15 pF 5 k
D2 D3
INPUT MONITORING NODE
*
7 6
4 C1 = 120 pF
GND 5
D4 R1
4 C1 = 120 pF
C2 = 15 pF 5 k
D2 D3 D4
GND 5
THE PROBE AND JIG CAPACITANCES ARE INCLUDED IN C1 AND C2. 2.15 k 1.10 k 681 R1 5 mA IF (ON) 1.6 mA 3 mA ALL DIODES ARE 1N916 OR 1N3064. THE PROBE AND JIG CAPACITANCES ARE INCLUDED IN C1 AND C2. 1.96 k 1.10 k 681 R1 5 mA IF (ON) 1.8 mA 3 mA
INPUT IF
IF (ON) 50 % IF (ON) 0 mA tPLH tPHL
ALL DIODES ARE 1N916 OR 1N3064.
OUTPUT VO
VOH 1.3 V VOL
Figure 5. Circuit for tPLH, tPHL , tr, tf.
* 0.1 F BYPASS -- SEE NOTE 9.
13
250
tP - PROPAGATION DELAY - ns
HCPL-22XX HCPL-02XX
tP - PROPAGATION DELAY - ns
250
HCNW22XX
IF (mA) 5 3 1.6* 1.6* -5
PO - MAXIMUM OUTPUT POWER PER CHANNEL (mW)
VCC = 5.0 V, 20 V C1 (120 pF) PEAKING CAPACITOR IS USED. SEE FIGURE 5. 200 *IF = 1.8 mA FOR HCPL-223X DEVICES.
VCC = 5.0 V, 20 V C1 (120 pF) PEAKING CAPACITOR IS USED. SEE FIGURE 5.
80
200
IF (mA) 5 3
60
TA = 75 C
TA = 80C
150
tPHL
150
tPHL
1.6 1.6, 5
40
TA = 85 C
100
tPLH
100
tPLH
20
50 -60 -40 -20
0
20
40
60
80 100
50 -60 -40 -20
0
20
40
60
80 100
0
0
5
10
15
20
TA - TEMPERATURE - C
TA - TEMPERATURE - C
VCC - SUPPLY VOLTAGE - V
Figure 6. Typical Propagation Delays vs. Temperature.
Figure 7. Maximum Output Power per Channel vs. Supply Voltage.
VOH - HIGH LEVEL OUTPUT VOLTAGE - V
20
tr, tf - RISE, FALL TIME - ns
TYPICAL VOH vs. VCC AT IO = -2.6 mA TA = 25 C
100 VCC = 5 V 80
15
60
10
40
tr
5
20 tf 0 -60 -40 -20 0 20 40 60 80 100
0
0
5
10
15
20
VCC - SUPPLY VOLTAGE - V
TA - TEMPERATURE - C
Figure 8. Typical Logic High Output Voltage vs. Supply Voltage.
Figure 9. Typical Rise, Fall Time vs. Temperature.
HCPL-2201/11 HCPL-02XX HCNW22XX
A B 1 2 3 8 7 6 5
VCC OUTPUT VO MONITORING NODE
R1
A 1 B 2 3 4
HCPL-2231/32
8 7 6 5
VCC OUTPUT VO MONITORING NODE 0.1 F BYPASS
RIN + VFF -
4
+
0.1 F BYPASS
VFF
-
PULSE GENERATOR +
VCM -
PULSE GENERATOR
VCM (PEAK) 0V VOH OUTPUT VO VOL SWITCH AT A: IF = 1.6 mA** VO (MIN.)* SWITCH AT B: VF = 0 V VO (MAX.)*
+
VCM -
|VCM|
* SEE NOTE 7, 9. ** IF = 1.8 mA FOR HCPL-2231/32 DEVICES.
Figure 10. Test Circuit for Common Mode Transient Immunity and Typical Waveforms.
14
1.0
INPUT CURRENT THRESHOLD - mA
HCPL-22XX HCPL-02XX
INPUT CURRENT THRESHOLD - mA
1.0
HCNW22XX VCC = 5.0 V VCC = 20 V
VCC = 5.0 V VCC = 20 V 0.9
0.9
0.8
IF (ON)
0.8
IF (ON) IF (OFF)
0.7 IF (OFF) 0.6
IF (ON) IF (OFF)
0.7
0.6 IF (ON)
IF (OFF)
0.5 -60 -40 -20
0
20
40
60
80 100
0.5 -60 -40 -20
0
20
40
60
80 100
TA - TEMPERATURE - C
TA - TEMPERATURE - C
Figure 11. Typical Input Threshold Current vs. Temperature.
OUTPUT POWER - PS, INPUT CURRENT - IS
OUTPUT POWER PS, INPUT CURRENT IS
800 700 600 500 400 300 200 100 0 0
HCPL-2211/2212 OPTION 060 PS (mW) IS (mA)
1000 900 800 700 600 500 400 300 200 100 0 0 25 50
HCNW22XX PS (mW) IS (mA)
25
50
75 100 125 150 175 200
75
100 125 150 175
TS - CASE TEMPERATURE - C
TS - CASE TEMPERATURE - C
Figure 12. Thermal Derating Curve, Dependence of Safety Limiting Value with Case Temperature per VDE 0884.
HCPL-2201/11 HCPL-02XX HCNW22XX VCC1 (+5 V) 1.1 k 2 DATA INPUT TTL OR LSTTL 4 5 3 7 6 * 1 8
VCC2 (+5 V)
DATA OUTPUT
UP TO 16 LSTTL LOADS OR 4 TTL LOADS
1
* 0.1 F BYPASS
2
Figure 13a. Recommended LSTTL to LSTTL Circuit where 500 ns Propagation Delay is Sufficient.
15
HCPL-2201/11 HCPL-02XX HCNW22XX VCC1 (+5 V) 80 1 1.1 k 120 pF 2 DATA INPUT TTL OR LSTTL 4 5 3 7 6 * 8
VCC2 (+5 V)
DATA OUTPUT
UP TO 16 LSTTL LOADS OR 4 TTL LOADS
1
* 0.1 F BYPASS
2
Figure 13b. Recommended LSTTL to LSTTL Circuit for Applications Requiring a Maximum Allowable Propagation Delay of 300 ns.
VCC1 (+5 V)
80 * 1.1 k 120 pF* 1 2
HCPL-2201/11 HCPL-02XX HCNW22XX VCC 8 7 6 GND 5 **
VCC2 (4.5 TO 20 V)
RL
CMOS
DATA OUTPUT
VCC1 (+5 V) 1.1 k 1 DATA INPUT 2 D1 3 4
HCPL-2201/11 HCPL-02XX HCNW22XX VCC 8 7 6 GND 5
DATA INPUT
3 TTL OR LSTTL 4
TOTEM POLE OUTPUT GATE
1
VCC2 5V 10 V 15 V 20 V
RL 1.1 k 2.37 k 3.83 k 5.11 k
2
TTL or LSTTL
* 120 pF PEAKING CAPACITOR MAY BE OMITTED AND 80 RESISTOR MAY BE SHORTED WHERE 500 ns PROPAGATION DELAY IS SUFFICIENT. **0.1 F BYPASS
D1 (1N4150) REQUIRED FOR ACTIVE PULL-UP DRIVER.
Figure 14. LSTTL to CMOS Interface Circuit.
Figure 15. Alternative LED Drive Circuit.
HCPL-2201/11 HCPL-02XX HCNW22XX VCC (+5 V) 80 * 1 1.1 k 4.7 k DATA INPUT TTL OR LSTTL 4 3 GND 6 5 120 pF* 2 7 VCC 8
OPEN COLLECTOR GATE
* 120 pF PEAKING CAPACITOR MAY BE OMITTED AND 80 RESISTOR MAY BE SHORTED WHERE 500 ns PROPAGATION DELAY IS SUFFICIENT.
Figure 16. Series LED Drive with Open Collector Gate (4.7 k Resistor Shunts IOH from the LED).
www.semiconductor.agilent.com Data subject to change. Copyright (c) 2001 Agilent Technologies, Inc. September 6, 2001 Obsoletes 5968-1094E (11/99) 5988-4108EN


▲Up To Search▲   

 
Price & Availability of HCPL2201

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X